

Introduction to N-grams

Dr. Partha Pakray

gmail

New Message

Recipients

Subject

Dear Robert,

Haven't seen you in a while

Thanks & Regards, Dr. Partha Pakray Assistant Professor (Gr. I) Department of Computer Science & Engineering National Institute of Technology Silchar Silchar, Assam, India partha@cse.nits.ac.in

Probabilistic Language Models

- Today's goal: assign a probability to a sentence
 - Machine Translation:
 - P(high winds tonite) > P(large winds tonite)
 - Spell Correction
 - $\circ~$ The office is about fifteen $\ensuremath{\textit{minuets}}$ from my house
 - P(about fifteen minutes from) > P(about fifteen minuets from)
 - Speech Recognition
 - P(I saw a van) >> P(eyes awe of an)
 - + Summarization, question-answering, etc., etc.!!

Why?

Probabilistic Language Modeling

• Goal: compute the probability of a sentence or sequence of words:

 $P(W) = P(W_{1}, W_{2}, W_{3}, W_{4}, W_{5}...W_{n})$

- Related task: probability of an upcoming word:
 P(w₅|w₁,w₂,w₃,w₄)
- A model that computes either of these:

P(W) or $P(w_n|w_1, w_2, ..., w_{n-1})$ is called a **language model**.

• Better: **the grammar**

But language model or LM is standard

Estimating bigram probabilities

The Maximum Likelihood Estimate

$$P(w_i | w_{i-1}) = \frac{count(w_{i-1}, w_i)}{count(w_{i-1})}$$

$$P(w_i | w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

Exercise 1: Estimating Bi-gram probabilities

What is the most probable next word predicted by the model for the following word sequence?

Given Corpus

<s>I am Henry</s>
<s>1 like college</s>
<s> Do Henry like college</s>
<s> Henry I am</s>
<s> Do I like Henry</s>
<s> Do I like college 🏹 S></s>
<s>I do like Henry</s>

Word	Frequency
<s></s>	7
	7
I	6
am	2
Henry	5
like	5
college	3
do	4

<s> do

? What is the most probable word?

<s>I am Henry</s>	W
	<
<s>Tlike college</s>	<,
<s> Do Henry like college</s>	
<s> Henry I am</s>	a
<s>Do Llike Henry</s>	He
	li
<s> Do I like college</s>	col
<s>I do like Henry</s>	(

Word	Frequency
<\$>	7
	7
I	6
am	2
Henry	5
like	5
college	3
do	4

Next word prediction probability W_{i-1}=do

1) <S> Do ?

$\operatorname{count}(W_{i-1}, W_i)$	
Next word	Probability Next Word
P(do)	0/4
P(<i> do)</i>	2/4
P(<am> do)</am>	0/4
P(<henry> do)</henry>	1/4
P(<like do)<="" td="" =""><td>1/4</td></like>	1/4
P(<college do)<="" td="" =""><td>0/4</td></college>	0/4
P(do do)	0/4 🗟

<s>I like Henry _____?

Which of the following sentence is better. i.e. Gets a higher probability with this model. Use Bi-gram

<S>I am Henry

<S>I like college

<S> Do Henry like college

<S> Henry I am

<S> Do I like Henry

<S> Do I like college

<S>I do like Henry

Word	Frequency
<\$>	7
	7
1	6
am	2
Henry	5
like	5
college	3
do	4

1. <S> I like college

<S> like college =?

Which of the following sentence is better. i.e. Gets a higher probability with this model. Use Bi-gram

<s>Lam Henry</s>	Word
	<s></s>
<s>I like college</s>	
<s> Do Henry like college</s>	1
<s> Henry I am</s>	am
S Do Llike Henry (S)	Henry
<3> Do Tilke Henry 3	like
<s> Do I like college</s>	college
<s>I do like Henry</s>	do

<S> I like college

<S> like college =?

Frequency

7

7

6 2 5

5

3

=P(I | $\langle S \rangle$) × P(like | I) × P(college | like) × P($\langle S \rangle$ | college)

 $=3/7 \ge 3/6 \times 3/5 \times 3/3 = 9/70 = 0.13$

2. <S> Do I like Henry

Which of the following sentence is better. i.e. Gets a higher probability with this model. Use Bi-gram

<s>I am Henry</s>	W
	<
<5>Tlike college 5	<
<s> Do Henry like college</s>	
<s> Henry I am</s>	a
S> Do Llike Henry SS	He
s>bottike Henry 4/32	li
<s> Do I like college</s>	col
<s>I do like Henry</s>	(

	Word	Frequency
	<\$>	7
		7
>	1	6
	am	2
	Henry	5
	like	5
	college	3
	do	4
		-

1. <S> I like college

<S> like college =?

=P($I | \langle S \rangle$) × P(like | I) × P(college | like) × P($\langle S \rangle$ | college)

 $=3/7 \ge 3/6 \times 3/5 \times 3/3 = 9/70 = 0.13$

2. <S> Do I like Henry

=P(do | <S>) × P(I | do) × P(like | I) × P(Henry | like) × P(| Henry) =3/7 × 2/4 × 3/6 × 2/5 × 3/5 = 9/350=0.0257

Estimating bigram probabilities

The Maximum Likelihood Estimate

$$P(w_i | w_{i-1}) = \frac{count(w_{i-1}, w_i)}{count(w_{i-1})}$$

$$P(w_i | w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

An example

$$P(w_i | w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

<s> I am Sam </s> <s> Sam I am </s> <s> I do not like green eggs and ham </s>

$$P(I | < s >) = \frac{2}{3} = .67 \qquad P(Sam | < s >) = \frac{1}{3} = .33 \qquad P(am | I) = \frac{2}{3} = .67 P(| Sam) = \frac{1}{2} = 0.5 \qquad P(Sam | am) = \frac{1}{2} = .5 \qquad P(do | I) = \frac{1}{3} = .33$$

Thank You!

Any Question?

What about unknown pair for bigram probability calculation?