Language Modeling

Can you please come here ?

History
Word being predicted
Introduction to N-grams

gmail

New Message

Recipients
Subject
Dear Robert,
Haven't seen you ha while
Thanks \& Regards,
Dr. Partha Pakray
Assistant Professor (Gr. I)
Department of Computer Science \& Engineering
National Institute of Technology Silchar
Silchar, Assam, India
partha@cse.nits.ac.in

Probabilistic Language Models

- Today's goal: assign a probability to a sentence
- Machine Translation:
- $P($ high winds tonite $)>P($ large winds tonite $)$

Why?

- Spell Correction
- The office is about fifteen minuets from my house

■ $P($ about fifteen minutes from $)>P($ about fifteen minuets from $)$

- Speech Recognition
- $P(I$ saw a van) >> P (eyes awe of an)
- + Summarization, question-answering, etc., etc.!!

Probabilistic Language Modeling

- Goal: compute the probability of a sentence or sequence of words:

$$
P(W)=P\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5} \ldots w_{n}\right)
$$

- Related task: probability of an upcoming word:

$$
\mathrm{P}\left(\mathrm{w}_{5} \mid \mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}, w_{4}\right)
$$

- A model that computes either of these:
$P\left(W_{)} \quad\right.$ or $P\left(w_{n} \mid w_{1}, w_{2} \ldots w_{n-1}\right)$ is called a language model.
- Better: the grammar But language model or LM is standard

Estimating bigram probabilities

- The Maximum Likelihood Estimate

$$
\begin{gathered}
P\left(w_{i} \mid w_{i-1}\right)=\frac{\operatorname{count}\left(w_{i-1}, w_{i}\right)}{\operatorname{count}\left(w_{i-1}\right)} \\
P\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)}{c\left(w_{i-1}\right)}
\end{gathered}
$$

Exercise 1: Estimating Bi-gram probabilities

What is the most probable next word predicted by the model for the following worc sequence?

Given Corpus

<S> I am Henry </S>
<S> I like college </S>
<S> Do Henry like college </S>
<S> Henry I am </S>
<S> Do I like Henry </S>
<S> Do I like college $\& / S>$
<S> I do like Henry </S>

Word	Frequency
$\langle\mathrm{S}\rangle$	7
$\langle/ \mathrm{S}\rangle$	7
I	6
am	2
Henry	5
like	5
college	3
do	4

1) $<$ S $>$ Do ?
<S> I like college </S>
<S> Do Henry like college </S>
<S> Henry I am </S>
<S> Do I like Henry </S>
<S> Do I like college </S>
<S> I do like Henry </S>

Word	Frequency
$\langle\mathrm{S}\rangle$	7
$\langle/ \mathrm{S}\rangle$	7
1	6
am	2
Henry	5
like	5
college	3
do	4

Next word prediction probability $\mathrm{W}_{\mathrm{i}-1}=\mathrm{do}$

Next word	
$\mathrm{P}(</ \mathrm{S}>$ \|do)	0/4
$\mathrm{P}(<1>\mid$ do)	2/4
P (<am>\| do)	0/4
P (<Henry>\| do)	1/4
P (<like \| do)	1/4
P (<college \| do)	0/4
P (do \| do)	0/4 A

<s> I like Henry ___ ?

Which of the following sentence is better. i.e. Gets a higher probability with this model. Use Bi-gram

<S> I am Henry </S>	Word	Frequency
<S> 1 like college </	<S>	7
	</S>	7
<S> Do Henry like college </S>	1	6
<S> Henry I am </S>	am	2
	Henry	5
<S> Do I like Henry </S>	like	5
<S> Do I like college </S>	college	3
<S> I do like Henry </S>	do	4

1. <S> I like college </S>
<S> like college </S>=?

Which of the following sentence is better. i.e. Gets a higher probability with this model. Use Bi-gram

<S> I am Henry </S> <S> I like college </S>	Word	Frequency
	<S>	7
	</S>	7
<S> Do Henry like college </S>	1	6
<S> Henry I am </S>	am	2
<S> Do I like Henry	Henry	5
	like	5
<S> Do I like college </S	college	3
<S> I do like Henry </S>	do	4

1. <S> I like college </S>
<S> like college </S>=?
$=P(1 \mid<S>) \times P($ like $\mid I) \times P($ college \mid like $) \times P(</ S>\mid$ college $)$
$=3 / 7$ 化 $3 / 6 \times 3 / 5 \times 3 / 3=9 / 70=0.13$
2. <S> Do I like Henry </S>

Which of the following sentence is better. i.e. Gets a higher probability with this model. Use Bi-gram

<S> I am Henry </S> <S> I like college </S>	Word	Frequency
	<S>	7
	</S>	7
<S> Do Henry like college </S>	1	6
<S> Henry I am </S>	am	2
<S> Do I like Henry </S>	Henry	5
	like	5
<S> Do I like college </S>	college	3
<S> I do like Henry </S>	do	4

1. <S> I like college </S>
$<S>$ like college $</ S>=$?
$=P(I \mid<S>) \times P($ like $\mid I) \times P($ college \mid like $) \times P(</ S>\mid$ college $)$
$=3 / 7$ Co $3 / 6 \times 3 / 5 \times 3 / 3=9 / 70=0.13$
2. <S> Do I like Henry </S>

$$
\begin{aligned}
& =P(\text { do } \mid\langle S\rangle) \times P(I \mid \text { do }) \times P(\text { like } \mid I) \times P(\text { Henry } \mid \text { like }) \times P(</ S\rangle \mid \text { Henry }) \\
& =3 / 7 \times 2 / 4 \times 3 / 6 \times 2 / 5 \times 3 / 5=9 / 350=0.0257
\end{aligned}
$$

Estimating bigram probabilities

- The Maximum Likelihood Estimate

$$
\begin{gathered}
P\left(w_{i} \mid w_{i-1}\right)=\frac{\operatorname{count}\left(w_{i-1}, w_{i}\right)}{\operatorname{count}\left(w_{i-1}\right)} \\
P\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)}{c\left(w_{i-1}\right)}
\end{gathered}
$$

An example

$$
P\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)}{c\left(w_{i-1}\right)} \quad \begin{aligned}
& \text { <s> I am Sam </s }> \\
& \text { <s }>\text { Sam I am </s }> \\
& \text { <s }>\text { I do not like green eggs and ham </s }>
\end{aligned}
$$

$$
\begin{array}{lll}
P(\mathrm{I}|<\mathrm{s}\rangle)=\frac{2}{3}=.67 & P(\mathrm{Sam} \mid\langle\mathrm{s}\rangle)=\frac{1}{3}=.33 & P(\mathrm{am} \mid \mathrm{I})=\frac{2}{3}=.67 \\
P(\langle/ \mathrm{s}\rangle \mid \mathrm{Sam})=\frac{1}{2}=0.5 & P(\mathrm{Sam} \mid \mathrm{am})=\frac{1}{2}=.5 & P(\mathrm{do} \mid \mathrm{I})=\frac{1}{3}=.33
\end{array}
$$

Thank You!

Any Question?

What about unknown pair for bigram probability calculation?

